260 research outputs found

    A new coupling solution for G3-PLC employment in MV smart grids

    Get PDF
    This paper proposes a new coupling solution for transmitting narrowband multicarrier power line communication (PLC) signals over medium voltage (MV) power lines. The proposed system is based on an innovative PLC coupling principle, patented by the authors, which exploits the capacitive divider embedded in voltage detecting systems (VDS) already installed inside the MV switchboard. Thus, no dedicated couplers have to be installed and no switchboard modifications or energy interruptions are needed. This allows a significant cost reduction of MV PLC implementation. A first prototype of the proposed coupling system was presented in previous papers: it had a 15 kHz bandwidth useful to couple single carrier PSK modulated PLC signals with a center frequency from 50–200 kHz. In this paper, a new prototype is developed with a larger bandwidth, up to 164 kHz, thus allowing to couple multicarrier G3-PLC signals using orthogonal frequency division multiplexing (OFDM) digital modulation. This modulation ensures a more robust communication even in harsh power line channels. In the paper, the new coupling system design is described in detail. A new procedure is presented for tuning the coupling system parameters at first installation in a generic MV switchboard. Finally, laboratory and in-field experimental test results are reported and discussed. The coupling performances are evaluated measuring the throughput and success rate in the case of both 18 and 36 subcarriers, in one of the different tone masks standardized for the FCC-above CENELEC band (that is, from 154.6875–487.5 kHz). The experimental results show an efficient behavior of the proposed coupler allowing a two-way communication of G3-PLC OFDM signals on MV networks

    Computing FO-Rewritings in EL in Practice: from Atomic to Conjunctive Queries

    Full text link
    A prominent approach to implementing ontology-mediated queries (OMQs) is to rewrite into a first-order query, which is then executed using a conventional SQL database system. We consider the case where the ontology is formulated in the description logic EL and the actual query is a conjunctive query and show that rewritings of such OMQs can be efficiently computed in practice, in a sound and complete way. Our approach combines a reduction with a decomposed backwards chaining algorithm for OMQs that are based on the simpler atomic queries, also illuminating the relationship between first-order rewritings of OMQs based on conjunctive and on atomic queries. Experiments with real-world ontologies show promising results

    Flow regimes study within the Strait of Gibraltar using a high-performance numerical model

    Get PDF
    A three-dimensional sigma coordinate free-surface high-performance model is used to investigate the flow regimes within the Strait of Gibraltar. High performances are achieved through a directive-based, MPI-like, parallelization of the code, obtained using SMS tool. The model makes use of a coastal-following, curvilinear orthogonal grid, that includes the Gulf of Cadiz and the Alboran Sea, reaching very high resolution in the Strait. Four experiments with different initial salinity conditions representing the present and possible future climate conditions over the Mediterranean basin have been performed. Model results, analysed by means of the three-layer composite Froude number theory, have shown two different possible regimes within the strait; for the present climate condition the strait is subjected to a sub-maximal regimewhilefor possible future climate conditions a maximal regime can be reached

    Detecting barriers to transport: A review of different techniques

    Full text link
    We review and discuss some different techniques for describing local dispersion properties in fluids. A recent Lagrangian diagnostics, based on the Finite Scale Lyapunov Exponent (FSLE), is presented and compared to the Finite Time Lyapunov Exponent (FTLE), and to the Okubo-Weiss (OW) and Hua-Klein (HK) criteria. We show that the OW and HK are a limiting case of the FTLE, and that the FSLE is the most efficient method for detecting the presence of cross-stream barriers. We illustrate our findings by considering two examples of geophysical interest: a kinematic meandering jet model, and Lagrangian tracers advected by stratospheric circulation.Comment: 15 pages, 9 figures, submitted to Physica

    Characterization of DC series arc faults in PV systems based on current low frequency spectral analysis

    Get PDF
    This work presents an experimental study focused on the characterization of series arc faults in direct current (DC) photovoltaic (PV) systems. The aim of the study is to identify some relevant characteristics of arcing current, which can be obtained by means of low frequency spectral analysis of current signal. On field tests have been carried out on a real PV system, in accordance with some tests requirements of UL 1699B Standard for protection devices against PV DC arc faults. Arcing and non-arcing current signals are acquired and compared and the behavior of a set of indicators proposed by authors is analyzed. Different measurement equipment have been used, in order to study the impact of both measurement transducers and data acquisition systems on proposed indicators effectiveness. Presented results show that the considered indicators are suitable for detecting the arc presence even with commercial devices normally used for smart metering applications

    Pair dispersion in turbulence

    Full text link
    We study the statistics of pair dispersion in two-dimensional turbulence. Direct numerical simulations show that the pdf of pair separations is in agreement with the Richardson prediction. The pdf of doubling times follows dimensional scaling and shows a long tail which is the signature of close approaches between particles initially seeded with a large separation. This phenomenon is related to the formation of fronts in passive scalar advection.Comment: 11 pages, 5 figure

    An interface protection system based on an embedded metrology system platform

    Get PDF
    The aim of this work is to present an interface protection system (IPS) for Distributed Generators (DG) and Energy Storage Systems (ESS). The new prototype of IPS guarantees standard protection requirements, in terms of both voltage and frequency measurement accuracies and trip times. Moreover, it has the additional functionalities of implementing a communication link between the Distribution System Operator (DSO) and the DG and ESS Inverter. The new IPS is based on a smart meter platform with an integrated power line communication modem. Moreover, it has also an integrated metrology section. Experimental tests will show how this last feature allows a significant reduction of the measurement data access time allowing an improvement of trip time accuracy

    Incremental heuristic approach for meter placement in radial distribution systems

    Get PDF
    The evolution of modern power distribution systems into smart grids requires the development of dedicated state estimation (SE) algorithms for real-time identification of the overall system state variables. This paper proposes a strategy to evaluate the minimum number and best position of power injection meters in radial distribution systems for SE purposes. Measurement points are identified with the aim of reducing uncertainty in branch power flow estimations. An incremental heuristic meter placement (IHMP) approach is proposed to select the locations and total number of power measurements. The meter placement procedure was implemented for a backward/forward load flow algorithm proposed by the authors, which allows the evaluation of medium-voltage power flows starting from low-voltage load measurements. This allows the reduction of the overall costs of measurement equipment and setup. The IHMP method was tested in the real 25-bus medium-voltage (MV) radial distribution network of the Island of Ustica (Mediterranean Sea). The proposed method is useful both for finding the best measurement configuration in a new distribution network and also for implementing an incremental enhancement of an existing measurement configuration, reaching a good tradeoff between instrumentation costs and measurement uncertainty

    A Line Impedance Calculator Based on a G3 PLC Modem Platform

    Get PDF
    Power line communication (PLC) is one of the most today used technologies for both automatic meter reading and many other smart grid applications. In this framework, a characterization of the electrical network in the PLC frequency range is needed in terms of impedance measurement and received signal level. This can allow choosing the most suitable and less noisy frequency ranges for PLC transmission. Usually, these characterization measurements are performed with dedicated instrumentation and in the absence of mains voltage. This article wants to propose an alternative solution, which allows these kinds of measurements to be performed using electronic boards currently used as on-field applications, such as smart meters. To this aim, an innovative measurement tool is proposed, which does not need a specific characterization signal to be injected because it uses the preamble of a generic PLC transmission. Moreover, the impedance calculation is performed using an FFT analysis, which does not require high computational capabilities. These features allowed the proposed tool to be implemented using a G3-PLC transceiver, embedded in many commercial smart meters, and low-cost additional hardware. This article shows how the proposed system correctly measures the PLC impedance on CENELEC A, B, and FCC frequency ranges
    corecore